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The self-propulsion of a deformable body 
in a perfect fluid 

By P. G. SAFFMAN 
California Institute of Technology 

(Received 15 August 1966) 

It is shown that a deformable body can move persistently from rest through a 
perfect fluid without having to produce vorticity in the fluid. 

Introduction 
It is well known that there is no force on a body in a uniform stream of perfect 

fluid (D’Alembert’s paradox). However, the related question of whether a body 
that is initially a t  rest relative to the fluid can by deformation of its surface give 
itself a persistent velocity does not seem to have been considered.? In  simpler 
language, we ask the question: can a fish swim in a perfect fluid? Of course, if 
circulation is allowed to be created in the fluid, by boundary-layer separation or 
the imposition of a Kutta condition at  a sharp trailing edge, then momentum can 
be transferred between the fluid and the body, and the body can propel itself 
through the fluid. Taylor (1952), Lighthill (1960), Wu (1961) and others have 
studied the swimming of bodies in fluids of small viscosity. But if the viscosity is 
identically zero (as in a superfluid) so that the fluid motion is a t  all times irrota- 
tional with a single-valued velocity potential, the propulsive mechanisms associ- 
ated with the appearance of vorticity in the fluid are not available. It might then 
be thought that the body would be unable to swim, or more precisely that it 
would be unable to move itself relative to the fluid by an arbitrary amount and 
have the same shape and structure a t  the end of the motion as at the beginning. 
The purpose of this note is to point out that this conclusion is false. The result will 
be demonstrated by constructing several fairly simple examples, but it will be- 
come apparent that any deformation which violates some fairly weak symmetry 
conditions will produce motion with a persistent component. Of course, a body 
can move itself vertically in a gravitational field by contracting or expanding so 
that its density is not equal to the fluid density, but we exclude such hydro- 
statically produced motions. 

Motion in a straight line without rotation 
The simplest case to consider is that of motion in a straight line in the absence 

of external forces for a body which is at all times symmetrical about the direction 
of motion. We suppose that the geometric centroid C of the body moves with 

With the exception of a recent paper by Benjamin & Ellis (1966), where it is pointed 
out that skew deformations of a body will tend to self-propel it through a fluid. 

25 

C” 

Fluid Mech. 28 



386 P. G. Xuffmun 

velocity W and that the centre of mass M moves with velocity W +  U .  For a 
heterogeneous body, the relative velocity of C and M is an arbitrary function of 
time determined by the internal structure; but U 3 0 if the body is homogeneous 
since C and M then coincide. 

We suppose the motion is started from rest. Then the conservation of momen- 

(1) 
tum states that at time t 

H ( W +  U ) + I  = 0, 

where M also denotes the mass of the body and I is the component of the fluid 
‘impulse’ (Lamb 1932, Ch. VI) in the direction of motion. The fluid impulse can 
be interpreted as the linear momentum of the fluid (Landau & Lifshitz 1959, 
5 1 l) ,  but there are well-known difficulties as the volume integral of the velocity 
is only conditionally convergent, and the impulse is properly the integral with 
respect to time of the net pressure force acting over the body surface. 

For irrotational motion with velocity potential $ (the convention is employed 
that u = V$), there is a result due to Kelvin (see Lamb 1932) 

I = - p  $n.edX, L 
where n is the normal from the body into the fluid, e is a unit vector in the direc- 
tion of motion, p is the fluid density, and the integral is over the body surface. 

The velocity potential can be broken up into two parts, 

4 = +T+$D, 13) 
where $T is the ‘translation potential ’ due to the motion of an instantaneously 
identical rigid body moving with velocity W ,  and $D is the ‘deformation poten- 
tial’ due to the change in shape relative to the rigid body. The component of 
impulse can be broken up into contributions from the two parts of the velocity 

(4) 
potential, i.e. I = IT + I-. 

Because (5) 

where V is the volume of the body, and r is measured relative to the centroid, it  
can be deduced that the impulse can be expressed as integrals over a sphere at 
infinity as follows: 

I D  = -3p/a$Dn.edX; (6) 

IT = -3p $,(n.e)dX-pVW L 
= mW, say, (7) 

where m ( > 0) is called the virtual or apparent mass of the body. The formulae 
(6) and (7) hold without restriction on the degree of connectivity of the body. 
The only restriction is that the body does not swallow fluid, as the momentum of 
fluid enclosed by the body is not included in (6) and (7). 

The equation of momentum conservation can then be written 
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where the quantities for which the time dependence is shown explicitly are func- 
tions only of the shape, structure and rate of deformation of the deformable body 
and are independent of W .  It is clear that an arbitrary displacement can be 
effected without a permanent or net deformation of the body if m, U and ID can 
be made to vary periodically with t in such a way that W has a non-zero time 
average, i.e. 1; w(t’)dt’-tWt as t+ao (9) 

with w + 0. We shall now describe two different ways in which this can be 
accomplished, one for a heterogeneous and the other for a homogeneous body. 

The case of a heterogeneous body 
For a heterogeneous body, we can have U $. 0, and it is simplest to suppose 

that the surface deformation has fore and aft symmetry so that I, = 0. Then 
is positive if U(t )  and m(t)-m(0) oscillate periodically in phase or with an in- 
phase component. For example, the body could be a light ellipsoidal shell of 
variable eccentricity but constant volume containing a heavy mass that can pull 
itself along the axis of revolution. The virtual mass is a function of the eccentricity 
and can be varied independently of the motion of the mass relative to the shell. 
If, for the sake of example, 

U = U, sin wt, m = mo( 1 + cc sin wt) ,  

2am0 M 
(mO+M)2-cx2m~+ (mo+M)  [ ( m o + M ) 2 - m ~ a ~ ] * ’  

it follows that 

r= 
Alternatively, we could suppose that the shell was a sphere with pulsating 

radius R(t). The virtual mass is $7rpR3. There is a net forward motion if R is less 
than its mean value when U is negative, and vice versa. 

The physical explanation of the propulsion mechanism is clear. There is no 
hydrodynamic force on a body moving with uniform velocity, but there is one on 
an accelerating body, which is described by the virtual mass. Now if the centre of 
mass is moved backwards, the recoil will send the shell forward. If then the 
resistance or virtual mass is less when the shell goes forward than it is when the 
reverse recoil is moving the shell backwards, the distance covered during the 
forward motion exceeds that covered during the backwards motion and there is 
a net forward displacement during each cycle. If the deformation of the body 
stops, then the body comes immediately t o  rest (after being displaced by an 
arbitrary amount depending on the duration) so that a uniform motion cannot 
be produced. Note that there is no continuing transfer of momentum between 
the body and the fluid; the momentum of the body oscillates about a non-zero 
mean while the oscillating deformation continues. The situation is therefore very 
different from the inviscid propulsion mechanisms of Lighthill and Wu where 
there is a persistent transfer of momentum from body to fluid associated with the 
creation of vorticity. Also there is no energy dissipation in the present case and 
no net work is expended. There is of course a transfer of energy between body 
and fluid, but this is loss-free and reversible. 
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It is worthwhile considering briefly the effect of buoyancy forces. Equation (8) 
should then be replaced by a vector equation with an extra term on the right- 
hand side equal to the impulse of the buoyancy force during the motion. The 
problem is now more complicated as there is in general a buoyancy couple, even 
if the buoyancy force is zero, since the resultant buoyancy forces act through the 
geometrical centroid (in a uniform gravitational field) which does not coincide 
with the centre of mass, and the body will tend to rotate and set up rotation in 
the fluid. If the rotation is negligible, as will be the case for vertical motion or if 
the moment of inertia (either real or virtual) is large, then it is obvious that the 
velocity produced by the deformation is independent of the buoyancy forces. 
However, if the buoyancy couple is not negligible, or for that matter if the body 
is not moving parallel to  an axis of symmetry so that there is a couple produced 
by the motion, the equations of motion become quite complicated and some care 
is required. It can be shown that motion in a given direction can be achieved by a 
rotation of the internal structure to compensate for the buoyancy couple or the 
couple produced by the motion itself, but we shall not give details here. In  
general, a body of zero buoyancy will move along a zig-zag path when the 
motion is produced by deformation and oscillation of the centre of mass. 

Motion of a homogeneous body 
For a homogeneous body, the centroid and centre of mass coincide and U = 0. 

Motion can then be produced by asymmetrical deformations with non-zero 
values of ID. Of course, m and IB are not independent because they are both 
functionals of the shape, but we shall again show by constructing an example that 
persistent motion is possible. In  fact, we shall demonstrate the stronger result 
that periodic deformations can give rise to a periodic 1, with non-zero mean. 
Unfortunately, a search for simple exact solutions to demonstrate these proper- 
ties has proved unsuccessful, and the simplest three-dimensional analysis appears 
to be for a slightly deformable sphere. 

Let us suppose the surface of the body has the equation in spherical polar co- 
ordinates (p = COSB) with origin at the centre of mass and the polar axis in the 
direction of motion, 

r = a +  e2(t) P2(P) + €3(t)P3(P) + To@) + T l V )  PdP) + W3)* (12) 
Here c2 and e3 are small quantities of the first order of characteristic value E ,  and 
yo and yl are of order e2 and are introduced so that the volume is constant and the 
centre of mass is at the origin to order e2. It is a straightforward calculation to 

It is necessary to work to second order, because from (6) it is apparent that a 
deformation which leaves the centre of mass at the origin gives no effect to first 
order. ,I he calculation of the velocity potential to second order is straightforward 
but tedious. The details are of no interest and we just give the results : 

( 14) 

(15)t 

(13) show that avo = - Z$ -2e.2 
5 2 7 3 ,  “71 = -+%2E3. 

m(t) = + p d [ l  -Q(e2/a)] + O(e2) ,  
ID(t) = $npa2(2d2e3- 2e2d3) + O(e3).  

t The qualitative form of this result is also given by Benjamin & Ellis (1966). 
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It follows from (8) that for a body with density equal to the fluid density 

If therefore e2 and E~ have a component out of phase, + 0 and there is persistent 
motion. It is clear from (15) that 1, + 0, and the motion is due to the impulse of 
the fluid due to the deformation having a non-zero mean. In  this example, the 
deformation has two components, one with fore and aft symmetry and the other 
without. For motion to take place, the two components are out of phase, so that 
the shape of the body when the recoil (which is due entirely to the asymmetrica1 
component) is sending it forward is different from the shape when the recoil is 
sending it back. Thus in essence the physical mechanism is the same as for the 
case of a heterogeneous body, and the general remarks made at  the end of the 
previous section apply equally well here, except that buoyancy forces now un- 
couple completely. Thus we have demonstrated that a fish can swim in a perfect 
fluid. t 
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t It is perhaps worth mentioning the obvious fact that if the body can swallow fluid, 
motion can also be produced by taking fluid in at  the front and leaving it behind at  the 
rear. 




